If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+24t-96=0
a = 5; b = 24; c = -96;
Δ = b2-4ac
Δ = 242-4·5·(-96)
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{39}}{2*5}=\frac{-24-8\sqrt{39}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{39}}{2*5}=\frac{-24+8\sqrt{39}}{10} $
| x2-6x+5=5 | | 3(3a-2)=8-12a+4(2a+3) | | 2a=4+20 | | 4x2=98 | | x2-x-5=-3 | | 2x(2x)=98 | | 6x+5x+x+5x-1050000=14x | | 6y2+4y-15y-10=0 | | -8x-20=-9x-6 | | 2m2-11m+5=0 | | 16a-96=112 | | -3/s/8=-6 | | x+(x*5/100)=15000 | | (2x+3)(3x+2)=(x-5)(6x-1) | | a(a=5) | | a+16=3a | | 8^(x^2-3x)=1 | | 3x+10=2x+160 | | 13x=-76 | | 3^(x)-9=72 | | 1(x+3)=41*2 | | 45-3p=5+2p | | 45-3p=2p+5 | | 6-x=2(x+x+1) | | 3(8-x)+5=3x | | 5(x+3)+5(x+15)=100 | | 5(3-2g)=2(7-g) | | b/4+4=13 | | 0.02x+0.10(20-x)=20(0.035) | | 4t=-2=2t-4 | | 3^x+5=2x | | 8+3x/4=3+x/4 |